If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.52x^2+250x-60=0
a = 0.52; b = 250; c = -60;
Δ = b2-4ac
Δ = 2502-4·0.52·(-60)
Δ = 62624.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-\sqrt{62624.8}}{2*0.52}=\frac{-250-\sqrt{62624.8}}{1.04} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+\sqrt{62624.8}}{2*0.52}=\frac{-250+\sqrt{62624.8}}{1.04} $
| 2x+x-18=x-34 | | x+15=5x-41 | | 8x+66=8(x-7) | | 6x+12=3x+3x-2 | | (t-8)-(t+15)=0 | | (3m)/(2/3)=7 | | Y+1=2x-6 | | 6+2x+1=1-x+9 | | 5n+20=n-8 | | 5/6q=15/41 | | 153+2h=999 | | -3b+6.2=-7.2 | | F(100)=0.9x-20 | | -246-4x+13x=87 | | 6x+12=5x+17 | | -21=2x-8+3x | | 22x+5=12x+5 | | 6t^2-12t+6=0 | | -119+2x+6x=73 | | 3(v^2+9v+15)=0 | | 10x+20=10x+280 | | x2+1=7 | | 9+2{2x+3}=17 | | 13x=-10+14x | | x-3.4=9.3 | | -41+12x-10x=31 | | X+7x=496 | | 68x=-204 | | 4x-1.2+2.1=-2.7 | | 5a+36=3a-2 | | x-13x-117=219 | | -76=-3x-3x-4 |